Graphene/Sulfur/Carbon Nanocomposite for High Performance Lithium-Sulfur Batteries

نویسندگان

  • Kangke Jin
  • Xufeng Zhou
  • Zhaoping Liu
چکیده

Here, we report a two-step synthesis of graphene/sulfur/carbon ternary composite with a multilayer structure. In this composite, ultrathin S layers are uniformly deposited on graphene nanosheets and covered by a thin layer of amorphous carbon derived from β-cyclodextrin on the surface. Such a unique microstructure, not only improves the electrical conductivity of sulfur, but also effectively inhibits the dissolution of polysulfides during charging/discharging processes. As a result, this ternary nanocomposite exhibits excellent electrochemical performance. It can deliver a high initial discharge and charge capacity of 1410 mAh·g-¹ and 1370 mAh·g-¹, respectively, and a capacity retention of 63.8% can be achieved after 100 cycles at 0.1 C (1 C = 1675 mA·g-¹). A relatively high specific capacity of 450 mAh·g-¹ can still be retained after 200 cycles at a high rate of 2 C. The synthesis process introduced here is simple and broadly applicable to the modification of sulfur cathode for better electrochemical performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite.

All-solid-state lithium-sulfur batteries (ASSLSBs) using highly conductive sulfide-based solid electrolytes suffer from low sulfur utilization, poor cycle life, and low rate performance due to the huge volume change of the electrode and the poor electronic and ionic conductivities of S and Li2S. The most promising approach to mitigate these challenges lies in the fabrication of a sulfur nanocom...

متن کامل

Reverse Microemulsion Synthesis of Sulfur/Graphene Composite for Lithium/Sulfur Batteries.

Due to its high theoretical capacity, high energy density, and easy availability, the lithium-sulfur (Li-S) system is considered to be the most promising candidate for electric and hybrid electric vehicle applications. Sulfur/carbon cathode in Li-S batteries still suffers, however, from low Coulombic efficiency and poor cycle life when sulfur loading and the ratio of sulfur to carbon are high. ...

متن کامل

Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries.

A functionalized graphene sheet-sulfur (FGSS) nanocomposite was synthesized as the cathode material for lithium-sulfur batteries. The structure has a layer of functionalized graphene sheets/stacks (FGS) and a layer of sulfur nanoparticles creating a three-dimensional sandwich-type architecture. This unique FGSS nanoscale layered composite has a high loading (70 wt%) of active material (S), a hi...

متن کامل

Mildly reduced less defective graphene oxide/sulfur/carbon nanotube composite films for high-performance lithium-sulfur batteries.

The microstructures and properties of the carbonaceous matrices in the cathodes of lithium-sulfur (Li-S) batteries have strong effects on their performances. We prepared a ternary composite cathode of mildly reduced less defective graphene oxide (mrLGO), sulfur, and carbon nanotubes (CNTs) by filtration for Li-S batteries. This battery showed a high initial specific capacity of 1219 mA h g(-1) ...

متن کامل

Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.

We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermedi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015